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SYNOPSIS 

The linear viscoelastic behavior of polydisperse polypropylenes in the melt is predicted 
using the molecular weight distribution (MWD) as determined from gel permeation chro- 
matography, on the basis of simplified molecular dynamics: single exponential form of the 
relaxation modulus of narrow fractions, double reptation, tube renewal, and constraint 
release. Owing to a few approximations, the calculation only requires a few parameters, 
namely the scaling law for the zero shear viscosity of narrow fractions vo = f ( M ) ,  the plateau 
modulus Gk, and the value of the molecular weight between entanglements Me. Using this 
method a relaxation spectrum of Maxwellian contributions with a large number of modes 
is obtained. This spectrum well predicts the rheological behavior in the terminal zone of 
samples obtained by controlled peroxydic degradation of polypropylene with polydispersity 
ranging from 4 to 10. Attention is focused on the zero shear rate viscosity, frequency, and 
modulus of the crossover of the storage and loss moduli from experiments and calculations, 
because these parameters are generally thought to be sensitive to both average molecular 
weight and polydispersity and are relatively easy to get from dynamic experiments. How 
the initial spectrum can be conveniently reduced to a more simple spectrum with only a 
few modes, without significant loss of information, is shown. This spectrum may be useful 
and time saving in calculations, for example, to describe the memory function in nonlinear 
constitutive equations while keeping its physical meaning in relation to the MWD. 0 1996 
John Wiley & Sons, Inc. 

INTRODUCTION 

The problem of the interconversion between rheo- 
logical data and the molecular weight distribution 
(MWD) of polymers remains one of the most famous 
challenges of polymer rheology. Three major meth- 
ods at  three different levels of complexity and em- 
piricism are found in the literature to reach this goal. 
In 1992, Fleissner’ had already made some classi- 
fication of the various methods that can be used for 
this purpose. 

At the basic level, many authors have tried to 
find correlations between some “easy to handle” 
rheological parameters and the various moments of 
the MWD. Many well-known attempts have been 
made using the zero-shear rate viscosity, equilibrium 
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compliance, terminal slope of the storage, and loss 
moduli connected with average molecular weights 
M,, M,, M,, and polydispersity indices M,/M,, Mz/ 
M,, and MZMz+,/M%. Because it is also known that 
accuracy on averages of order greater than M ,  is 
generally poor among these last parameters, more 
attention’ has been paid to relations between zero 
shear viscosity (vo)  and first moments and polydis- 
persity index in the form 

Zeichner and Patel* also showed that the frequency 
(w,) and modulus (G,) values of the crossover of the 
storage and loss moduli may be connected with 
polydispersity and average molecular weight. Es- 
pecially 1/G, and vow, are related to MJM,,. 

On the other hand, the most sophisticated way 
certainly deals with any method that might enable 
the recovery of the entire MWD information from 
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rheometry data, just as it could be obtained by 
physicochemical techniques such as gel perme- 
ation chromatography without the discrepancies 
of these methods. Among the techniques in use to 
reach this ambitious purpose, one may distinguish 
between methods that keep some empiricism and 
those that try to take into account the physics and 
the dynamics of polymer chains in a more rigorous 
way. Whatever the method, the first step is to 
check if the forward calculation from a known 
MWD to rheological functions is valid. From this 
result, one might assume that the second step 
should be straightforward. Unfortunately, this is 
not the case. 

Among more or less empirical methods, many au- 
thors proposed the use of the non-Newtonian part 
of flow curves to calculate the MWD. For example, 
Bersted3 assumes that the behavior of the material 
at  any shear rate of the flow curve may be associated 
with a particular mass Mx that partitions the MWD 
into two regions. On one hand, if the masses are 
lower than M,, molecules contribute to the viscosity 
as their weight fraction times their zero shear rate 
viscosity. On the other hand, if their masses are 
higher than M,, they only contribute to the viscosity 
as their weight fraction times the zero shear rate 
viscosity of M,. Calculation requires the scaling law 
relating the mass to the zero shear viscosity and the 
power law of the flow curves in the non-Newtonian 
region of monodisperse samples. Expressing these 
variations in terms of relaxation times, Bersted also 
obtains a continuous relaxation time distribution 
that enables the calculation of dynamic m o d ~ l i . ~ . ~  
At least the inferred relations make the calculation 
of the MWD from the flow curve possible,6 although 
some question arises here concerning the accuracy 
that might be obtained in the long time range, or 
equivalently in the high molecular weight tail of the 
MWD, keeping in mind that this part of the MWD 
is dramatically important for the rheological prop- 
erties and processing behavior. Tuminello et al.7,8 
established the limits of accuracy of the method in 
the case of the complex viscosity obtained from dy- 
namic experiments. Unfortunately, Malkin and 
Teishev' clearly showed that the inverse problem is 
typically ill-posed (several MWD giving the same 
flow curve in the experimental uncertainty range), 
unless a defined shape is assigned to the MWD. 

Finally, regarding a clear picture of physical 
meaning of the interrelation between the MWD and 
the rheological properties, recent advances in the 
various concepts of molecular dynamics certainly 
offer a promising way, a t  least in the linear visco- 
elastic domain. From the theoretical equations that 
enable the calculation of the dynamic moduli in the 

terminal zone of linear polymer melts from a given 
MWD, one might try some minimization procedure 
to solve the inverse problem. Among the various 
studies based on this guess, Wu" uses the Doi-Ed- 
wards theory to get the MWD of polystyrene Sam- 
ples from the storage modulus versus frequency 
curve C ( w ) .  A simple correspondence between re- 
laxation time (or frequency) and mass is assumed 
and the storage modulus variation in the terminal 
zone is just the cumulative MWD. Tuminello and 
coworkers"-'3 noticed that, because in concentrated 
polymer solutions the plateau modulus is propor- 
tional to the squared concentration of chains in the 
solvent, the storage modulus variation might rather 
reflect the squared MWD in the case of a melt, with 
unrelaxed molecules playing the role of the diluent. 
Wasserman and Graessley,14 using the concept of 
double reptation of Des Cloiseaux,15 together with 
different forms of the relaxation function of the 
monodisperse species, also presented different ex- 
amples of calculation of the dynamic moduli from 
known MWD without carrying any calculation of 
the inverse problem. Refinements of the theory con- 
cerning some changes of relaxation times in a com- 
posite surrounding are taken into account in several 
ways for example by YuI6 and Eder et al.17 A one to 
one correspondence between mass and relaxation 
times is assumed, and the modification of chain dy- 
namics by the surrounding is taken into account by 
the use of a shift factor to be applied on the relax- 
ation times. Montfort and  colleague^'^^'^ showed how 
the coupling of reptation and tube renewal effects 
drastically changes the relaxation times of polymer 
chains in a complex surrounding toward their values 
in monodisperse fractions. In particular, constraint 
release and tube renewal alter the dynamic of poly- 
mer chains from a reptation process to a Rouse-like 
process. Cassagnau et a1." used this theory to suc- 
cessfully calculate the dynamic moduli in the ter- 
minal zone for various linear polymers. 

Among the various works found in the literature, 
it is worth mentioning that of Rahalkar2'p22 that 
combines the interests of the various points of view 
previously discussed. Indeed, the author used the 
Doi-Edwards theory in the case of a monodisperse 
sample to calculate terminal parameters but also 
showed that in the case of a polydisperse sample, 
the effect of polydispersity must be taken into ac- 
count. Short chains are assumed to behave as being 
fully entangled, thus relaxing according to Doi-Ed- 
wards' predictions; long chains are assumed to be 
less entangled and to have a Rouse movement. This 
defines an arbitrary molecular weight cutoff for one 
process or the other, giving physical sense to the 
ideas of authors such as B e r ~ t e d . ~ - ~  
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In the present article it is shown how the MWD 
of different widely polydisperse polypropylene sam- 
ples (polydispersity ranging from nearly 4 to 10) can 
be used to calculate a relaxation spectum and in 
turn dynamic moduli in the terminal zone. Reptation 
and Rouse theories are used for this purpose together 
with constraint release and tube renewal ideas. The 
calculation only requires a limited number of ex- 
perimentally obtainable parameters, namely the 
plateau modulus, the molecular weight between en- 
tanglement, and the scaling law for zero shear rate 
viscosity versus molecular weight. The calculation 
shows the good agreement between calculated and 
measured parameters such as zero shear rate vis- 
cosity or crossover frequency. At  the least it is shown 
that the complex spectrum can be transformed into 
a reduced spectrum with a minimum loss of infor- 
mation. 

So in this case F can be considered as the normalized 
relaxation function of a monodisperse sample. Be- 
cause this function is generally known to be a series 
of exponential terms containing one dominant term, 
it may be written as 

with Xei  being the relaxation time of a junction be- 
tween similar chains of mass Mi or the observed 
relaxation time of such a monodisperse sample. F 
can also be considered as the probability of survival 
of an i-i entanglement, or equivalently as the prod- 
uct of two probability functions, each of the follow- 
ing form: 

THEORY 

The starting point of the calculation is the MWD 
that is supposed to be constituted of N types of dif- 
ferent species having different species having dif- 
ferent molecular weights M i  and corresponding 
weight fractions Wi . 

Relaxation Modulus 

The relaxation modulus G ( t )  is assumed to be a 
sum of three major contributions. The most impor- 
tant one is attributed to entanglements between 
chains giving rise to a time dependent network cor- 
responding to a modulus GN( t )  . Entanglements be- 
tween two chains are assumed to be possible pro- 
vided that both their molecular weights are higher 
than the critical value M, = 2Me,  where Me is the 
molecular weight between entanglements. The re- 
laxation modulus of such a network can be written 
using the double reptation concept of Des 
C l o i ~ e a u x ' ~ ~ ~ ~ , ~ ~  in the form 

where F is such that at  short times GN( t )  tends to 
the plateau modulus G k ,  which means that the ma- 
terial behaves as a physically crosslinked rubber. 
One can get an idea of the significance of F consid- 
ering that for a monodisperse sample of mass M i  
greater that M,  

which means that the i-i entanglement between two 
i chains remains only if none of them has relaxed, 
each chain having its own relaxation function in the 
form of eq. (5 ) . Going back to the case of entangle- 
ments between chains of different length, similar 
considerations lead to eq. ( 2 )  that states that the 
modulus is the sum of contributions of i- j junctions 
for which none of the two chains, either of i or j 
type, has relaxed. This is of course weighted ac- 
cording to the frequency of such i- j contacts in the 
blends that depends on the volume fraction of each 
species (assumed to be equal to the weight fraction 
if variation of melt density with chain length is ne- 
glected). 

It is now worth noticing that the characteristic 
relaxation time hi of each type of chain is also dif- 
ferent from its value Xei in a monodisperse sample 
of same mass, because the surrounding effects may 
be prominent in this case. A t  least, eq. ( 2 )  can also 
be written as 

Finally, if NH I N is the number of fractions of the 
MWD such as Mi > M,, this gives a relaxation spec- 
trum containing: 

1. N H  modes with relaxation times X k  = X i  and 
gk = GkW and 
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2. NH(NH - 1 ) / 2  modes with relaxation times 
X k  = 2XiXj/(Xi + A,) andgk = 2GkWiWj. 

As far as molecular weights smaller than M ,  are 
concerned, they are assumed to contribute to the 
relaxation modulus in the form of a single time 
Rouse spectrum such as 

( 7 )  

It should be noticed that in this case, the relaxation 
time remains unchanged whatever the surrounding 
is and is equal to that observed in a monodisperse 
sample of the same mass, so that X i  = X e i .  So, the 
total spectrum contains NL = N - N H  additional 
modes with relaxation times X k  = X i  and g k  

The third contribution to the relaxation modulus 
is that of parts of the chains between entanglements 
for which a Rouse spectrum equivalent to that of a 
chain of mass Me is supposed. 

= ( ~ ~ / 6 ) M , G g ( w i / M , ) .  

where A,, is the theoretical relaxation time of a chain 
of length Me.  So, one more mode with relaxation 
time X k  = A,, and gk = ( a 2 / 6 )  Gk  c Wi is added to 

the final spectrum. 

get the total relaxation modulus 

i 

At least the three contributions are summed to 

Experimental Relaxation Time of Monodisperse 
Sample Xei 

The basis of the calculation of the relaxation time 
of any species Mi in a complex surrounding remains 
the experimental relaxation time of a monodisperse 
polymer X e i  with the same mass, that is, in its own 
surrounding. This is calculated using the scaling law 
for zero shear rate viscosity qo as a function of mo- 
lecular weight 

with a generally known to be close to 3.4 for molec- 
ular weight greater than M,. The viscosity may also 

be related to the characteristic time of the mono- 
disperse sample through 

Thus 

with 

These expressions are valid for molecular weight Mi 
> M,, whereas in the opposite case, it is assumed 
that the zero shear viscosity is proportional to Mi 
and can be calculated from the Rouse theory 

and 

with 

Because at M ,  = 2Mc the Rouse behavior crosses 
the entanglement domain for the zero shear rate 
viscosity versus molecular weight curve 

thus 

Relaxation Time of an i Chain in Polydisperse 
Surrounding: Tube Renewal 

The relaxation time of any species such as Mi > M,  
changes with the surrounding and the observed re- 
laxation time of a polymer chain of mass Mi in a 
composite surrounding can be very different from 
that in a monodisperse environment. 

Even in the case of a monodisperse sample, the 
relaxation time of an i chain can be assumed to be 
a combination of two mechanisms because either 
the chain has reptated out of the tube formed by 
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surrounding molecules with a characteristic time Xdi 

(wherein fluctuation of path length might also be 
included), or the initial surrounding has vanished 
through motion of other chains and the molecule 
under scope can renew its configuration by a Rouse 
motion with characteristic time XRii (renewal time 
of the i chain in its own surrounding). 

The two phenomena are assumed to act indepen- 
dently to give the observed experimental relaxation 
time of the monodisperse sample that following 
Graessley,25 leads to 

The same considerations can be taken into account 
for an i chain in a composite surrounding, but the 
renewal time in this surrounding is now XRbi and the 
relaxation time Xi of the chain is now 

Combining (19) and (20) enables us to write 

lube Renewal limes ARji and ARbj 

Experimentally, there is some evidence that, in the 
monodisperse case, the renewal time is proportional 
to Mq.4 .18,1y Moreover, according to Klein,26 Mont- 
fort et al.,"*" and Cassagnau et a1.20 the renewal 
time of an i chain in a j surrounding, which is the 
case of binary blends, is proportional to M,2.4M;. 
According to Grae~sley,'~ these renewal times are 
the expression of the probability that portions of 
surrounding chains involved in any entanglement, 
playing the role of obstacles, have experienced a local 
"jump" to free the i chain by a constraint release 
process and that this chain can consequently relax 
according to a Rouse motion. The segment of the 
equivalent Rouse chain has a length of Me. These 
two processes are dependent and in the monodis- 
perse case, 

In the polydisperse case, 

where XOi is the survival time of the obstacles in the 
monodisperse one, which all are of i nature. How- 

ever, in the polydisperse case, because of the com- 
plexity of the surrounding, an average jump time of 
obstacles (A,) has to be defined. 

Obstacle Time in Monodisperse Case AOj 

Considering the previous remarks, one can write 

It is worth mentioning that there is some doubt 
about the physical meaning of the 2.4 exponent in 
eq. (24). For KleinZ6 the obstacle time is related to 
the reptation time of the surrounding chains (pro- 
portional to the third power of the molecular weight), 
but the constraints may not be independent because 
they may belong to the same chain, so that 

For Montfort'8s'y the obstacle time is related to the 
experimental relaxation time, thus scaling nearly as 
M3.4, and obstacles vanish in a much faster way. 

Equation (26) enables us to write eq. (24) in a more 
general form, using the a exponent of the scaling 
law (10) of the Newtonian viscosity as a function of 
the molecular weight: 

XOi is taken to be zero for short chains (Mi < M,). 
The constant KO is determined assuming that in the 
vicinity of the critical molecular weight (Mc), con- 
tributions of the reptation and renewal processes 
are of the same order of magnitude in eq. (19). Thus, 
in this case, the renewal time is twice the experi- 
mental time and 

Constraint Release: Average Obstacle Time in 
Polydisperse Case (A,) 

GraessleyZ5 and Montfort and colleagues'8 consider 
that A,; is the lifetime of i obstacles and that their 
relaxation is obtained by the release of one over z 
constraints, forming a surrounding cell, each relax- 
ing according to a Rouse function, such as 
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In the composite surrounding, the previous authors 
proposed that 

Assuming z = 3, (A,) can be calculated: 

for Mi > M,, Mj > M,, and Mk > M,. 

EXPERIMENTAL 

Basic and Modified Materials: Peroxidation 
Process 

Four basic polypropylenes were used in this study 
and they are referenced in Table I (Al, B1, C1, Dl).  
To get samples with different types of MWD, per- 
oxidations were performed on these resins in a 50- 
mL cell batch mixer (Rheocord Haake) at a tem- 
perature of 190°C and a rotational speed of 16 rpm. 
The temperature of the melt and the torque resulting 
from the viscous friction of the polymer on the 
counterrotating paddles were controlled. For deg- 
radation, resins were introduced in the temperature 
regulated cell where they experienced thermal and 
shear effects. A homogeneous melt was obtained in 
11 min; 0.1% of 2,5 dimethyl-2,5-di(t-butylperoxy) 
hexane from Akzo Chemicals peroxide was then in- 
troduced and samples were removed either at  the 

end or during the reaction, after addition of an an- 
tioxidant that inhibits the reaction of degradation. 
The most effective antioxidant was found to be the 
Irgafos P-EPQ from Ciba Geigy (combined primary 
and secondary antioxidants) at  4% weight. Nine 
samples were finally obtained for this study. Their 
references and origins are summarized in Table I. 

Characterization: M W D  and Rheological 
Behavior 

The MWD characterization was performed by gel 
permeation chromatography at  145°C in ODCB (o- 
dichlorobenzene) after filtration of the solutions be- 
fore injection [Fig. l(a-d)]. 

Rheological measurements were obtained in dy- 
namic oscillatory mode with a Rheometrics Dynamic 
Analyser RDA 700, using parallel plates geometry; 
25- or 40-mm diameter plates were used depending 
on the material under study. The tests were per- 
formed at 185, 170, and 200°C with frequencies 
ranging, when possible, between 0.01 and 500 rad/ 
s and master curves at  185°C were built. All exper- 
iments were carried out in the linear viscoelastic 
domain. This was systematically checked for each 
material and temperature at  various frequencies. 
Maximum strain amplitude was chosen to avoid any 
strain dependence of the moduli and to insure ac- 
ceptable values of the measured torque whenever 
possible. 

RESULTS AND DISCUSSION 

Data for Calculation 

The calculation only requires the knowledge of a 
few data, namely the molecular weight between en- 
tanglements, the plateau modulus, and the scaling 

Table I Molecular Characteristics of Different Polypropylene Resins 

M" Mw M,  
Material Sampling ( g  mol-') ( g  mol-') (g mol-') M J M ,  

A1 
A2 
B1 
B2 
c1 
c 2  
D1 
D2 
D3 
D4 

Basic Resin 
End of reaction (= 240 s )  
Basic resin 
End of reaction (= 240 s )  
Basic resin 
End of reaction (= 240 s) 
Basic resin 
Reaction stopped 45 s 
Reaction stopped 105 s 
End of reaction (= 240 s )  

30,800 
33,700 
27,100 
26,200 
25,100 
16,100 
19,400 
20,100 
17,300 
14,000 

225,000 
150,000 
189,000 
128,000 
165,000 
113,000 
212,000 
186,000 
149,000 
119,000 

1,190,000 
581,000 
605,000 
415,000 
540,000 
359,000 

1,110,000 
795,000 
534,000 
496,000 

7.3 
4.4 
7.0 
4.9 
6.6 
7.0 

10.6 
9.3 
8.7 
8.5 
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Molecular Weight [g mol-'1 Molecular Weight [g mol-'] 

04 

Molecular Weight [g mol-'1 Molecular Weight [g mol-'1 

Figure 1 (a) Molecular weight distribution of samples (-) A1 and (- - -) A2. (b) Molecular 
weight distribution of samples (-) B1 and (- - -) B2. (c) Molecular weight distribution of 
samples (-) C1 and (- - -) C2. (d) Molecular weight distribution of samples (-) D1, 
(- - -) D2, ( * * * ) D3, ( -  * -) D4. 

law for the zero shear viscosity at  the temperature 
of the study. The plateau modulus GL was taken to 
be 8.105 Pa according to the results of Baumgaertel 
and Winter.27 The molecular weight between entan- 
glements Me can be calculated from this value, as- 
suming a melt density of polypropylene'' p = 0.750 
g/mL according to the classical definition 

of the various samples. This resulted in spectra con- 
taining a large number of modes, generally on the 
order of 100, as shown in Table 11. However, these 
spectra contained too many modes to be easily han- 
dled in subsequent calculations, for example, flow 
modelization. To get more simple and more useful 

(32) Table I1 Time Limits and Mode Number of 
Complete Spectrum 

The value was found to be Me = 3570 g mol-' in 
agreement with Van Krevelen.28 The following 
theoretical scaling law of the zero shear rate viscosity 
was used at 185°C: 

9o = 4.10 10-*7~3.7 (33) 

where qo is in Pa s and M is in g mol-' 

Discrete Spectrum with a large Number of Modes 

Calculation of the relaxation spectra were performed 
using a fine discretization (20 fractions) of the MWD 

Mode Minimum Maximum 
Time ( s )  Material Number Time (s) 

A1 
A2 
B l  
B2 
c1 
c 2  
D1 
D2 
D3 
D4 

126 
141 
126 
126 
99 
99 

112 
126 
112 
112 

2.67 lo-'' 

4.94 10-10 
9.00 10-10 
1.17 lo-'' 
1.20 10-1° 
2.18 lo-'' 
4.50 lo-'' 
2.05 lo-'' 
1.89 10-1° 

1.85 10-9 
47.54 
5.09 
5.14 
1.13 
3.25 
0.49 

26.68 
15.45 
2.17 
1.16 
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Ln 
1001 ' / , : ' . . . . I  ' ' . . . . . . I  ' ' . . .... '  ' ' . . ' . . . I  ' '.,,,"I 

10-2 10-1 100 10' 102 lo3 
Frequency [rad/s] 

Figure 2 Dynamic moduli of sample C1 at 185T from 
experiments (0) storage modulus, (0) loss modulus, and 
calculation (-) full spectrum, (- - -) reduced spectrum. 

spectra, an "economic" spectrum with only a few 
modes was defined. 

Economic Spectrum with a Small Number 
of Modes 

This spectrum with NE modes (Xi, g i )  was calculated 
from the previous one according to the following 
procedure. At first, the longest relaxation time A,,, 
of the complete spectrum, which is generally known 
to be very important for the rheological behavior, is 
always taken into account in the new spectrum 

Other relaxation times (i = 2 to NE) are calculated 
starting from this longest time, considering about 
1.5 times per decade and thus setting first 

X i  = 0.469"-"X,,, (35) 

Modulus gi and viscosity qi contributions of the new 
spectrum (for i # 1) are calculated by summation of 
the corresponding contributions in the initial 
spectrumz7 between 

and 

Finally, these relaxation times are renormalized ac- 
cording to 

Because short times are generally less important for 
calculation of the rheological behavior, the time 
spectrum can be more or less rapidly cut off in the 
short time range, depending on the operator's will 
through the number of modes N E .  Figure 2 shows a 
comparison between values of dynamic moduli cal- 
culated either with the complete [Fig. 3(a)] or an 
economic spectrum using only 10 modes for sample 
C1 [Fig. 3(b)]. Note that, in this particular case, the 
spectrum was cut off in the short time range at  nearly 
10-5  s. 

Dynamic Moduli 

Owing to the complete spectra, the storage and loss 
moduli of the various samples were calculated and 
Figure 4(a,b) shows the experimental and calculated 
moduli in the case of samples Dl-D4 that were ob- 
tained at  various times during the peroxidation of 
polypropylene D1. Successful depiction of the data 
can be obtained in these cases with physically 
meaningful spectra, the situation being at  its best 
for the loss modulus and slightly worse in the case 
of the storage modulus. Because elasticity is known 

LOO 

10 

10 
n 
Lo 

k 102 

; 10' 

1. 
5 

v, 
w 

100 

10-1 
1c 

Time [ s ]  

Y L ~~ 

10-2 10-1 

10' 

irvJ 

10' 
Time [ s ]  

Figure 3 (a) Complete calculated relaxation spectrum 
of sample C1. (b) Reduced calculated relaxation spectrum 
of sample CI. 
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- lo5 

v) lo4 

B lo3 

102 

v1 10' 

100 

m a 
Y 

3 
3 

z 
aJ 

- 

0 -w 

10-2 10-1 100 10' lo2 lo3 
Frequency [rad/s] 

lo' p'/ 
100' ' ' ' ( . . . , '  ' ' ' , , . . . I  ' ' , , , ' . . '  ' " . . ' . . '  ' ' I . . . . . '  

10-2 lo-' 100 10' lo2 lo3 
Frequency [rad/s] 

Figure 4 (a) Storage modulus of samples D a t  185°C 
from experiments (0) D1, (A) D2, (' ) D3, (0) D4, and 
(-) calculation. (b) Loss modulus of samples D at  185°C 
from experiments (0) D1, (A) D2, ( c )  D3, (0) D4, and 
(-) calculation. 

to be very susceptible to the shape of the MWD, 
this might be attributed to imperfections in the de- 
scription of the effect of the surrounding or tube 
renewal, certainly due to  the strong simplifying as- 
sumptions of the calculation. It could also be shown 

Table I11 Parameters of Terminal Zone 

Experimental Viscosity [Pa s] 

Figure 5 
viscosities. 

Experimental and calculated zero shear rate 

that reduced spectra with fewer modes are also ef- 
ficient to describe the dynamic moduli. 

Terminal Parameters 

Table I11 shows the values of terminal parameters, 
namely the zero shear rate viscosity to and the elastic 
compliance J!,  for all samples as  calculated from 
the complete spectrum, a 10-mode spectrum, or ex- 
periments. Figure 5 shows the perfect agreement 
with the later values and the calculated ones for the 
zero shear rate viscosity. Unfortunately, experi- 
mental values of the elastic compliance are not 
available because the experimental window does not 
extend far enough in the low frequency range to en- 
able an accurate estimate of this parameter. 

Crossover Parameters 

Because it  is known2 that the crossover character- 
istics (frequency and modulus of the crossing point 

Experimental Complete Spectrum Reduced Spectrum 

Material vo (Pa s )  vo (Pa s )  Jp (Pa-') vo (Pa s )  JO (Pa-') 

A 1  
A2 
B1 
B2 
c 1  
c 2  
D1 
D2 
D3 
D4 

1.54 104 
2.32 lo3 
4.82 103 
9.12 10' 
2.79 lo3 
5.80 10' 
1.33 104 
5.36 103 
2.00 103 
9.11 10' 

1.77 104 
1.78 103 
5.94 lo3 

3.09 lo3 

1.02 104 
5.52 103 
2.26 103 

1.04 lo3 

6.34 10' 

7.64 10' 

2.70 1 0 - ~  
2.49 10-4 
1.17 1 0 - ~  
1.27 10-4 
1.30 10-4 
1.02 10-4 
2.84 10-4 
2.20 10-4 
1.28 10-4 
1.84 10-4 

1.76 104 
1.77 103 
5.87 103 
1.03 103 
3.05 103 

1.01 104 
5.51 103 
2.24 103 

6.27 10' 

7.52 10' 

2.23 10-4 
2.06 10-4 
9.55 10-5 
1.05 10-4 
LOO 
8.39 10-5 
2.27 10-4 
1.94 
1.07 10-4 
1.44 10-4 
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Table IV Crossover Values 

Experimental Complete Spectrum Reduced Spectrum 

Material wc (rad s-') Gc (Pa) wc (rad s-l) GC (Pa) wc (rad s-l) GC (pa) 

A2 87 3.16 lo4 294 5.10 104 294 5.13 104 
B1 44 3.16 lo4 36 3.11 lo4 36 3.14 104 
B2 270 3.63 104 346 4.52 104 304 4.31 lo4 
c1 64 2.44 lo4 95 3.80 lo4 92 3.83 104 
c2 339 2.73 lo4 478 4.24 104 470 4.25 1 0 4  

D1 11 1.82 lo4 9 1.43 104 9 1.40 lo4 
D2 30 2.01 104 36 2.49 104 43 2.96 104 
D3 79 2.12 lo4 82 2.78 lo4 82 2.80 104 
D4 177 2.24 lo4 346 3.29 104 263 3.02 104 

A1 13 2.99 lo4 9 1.97 lo4 8 1.94 lo4 

of the storage modulus and loss modulus versus fre- 
quency curves) are very susceptible to the MWD, 
we paid some attention to these values. As can be 
seen in Table IV and Figure 6, there is a fair agree- 
ment between the experimental and theoretical val- 
ues for the frequency. The result is rather unsatis- 
fying as far as the modulus is concerned, although 
the variation of the calculated values is consistent 
with that of the experimental data. Because the 
crossover modulus is generally assumed to be related 
to the polydispersity? this discrepancy may be at- 
tributed to an improper or at least incomplete de- 
scription of the surrounding effect on the relaxation 
of a given chain as already mentioned earlier. 

Terminal Parameters in Relation to Average 
Molecular Weights 

Figure 7 shows the variation of the Calculated zero 
shear viscosity versus the weight average molecular 
weight of the various samples. The calculated scaling 

Experimental CO Frequency [rad/s] 

Figure 6 
quencies. 

Experimental and calculated crossover fre- 

law for polydisperse polypropylene samples at 185OC 
is 

where to is in Pa s and M ,  is in g mol-'. 
This has to be compared with the scaling law (33) 

for monodisperse fractions. The exponent of scaling 
law (38) is much larger for polydisperse materials 
as already mentioned by other authors.18 

As shown in Figure 8, the calculated equilibrium 
elastic compliance is found to be related to a poly- 
dispersity index defined as MJM, rather than the 
classical Ip = MJM,,, according to the linear relation 

J:  = 10-4(0.79Mz/Mw - 1.40) (39) 

where J:  is in Pa-'. (The former relation was ob- 
tained without taking sample A2 into account that 
shows a large deviation from the set of data.) This 

I 

106 
102 t 

105 
Molecular Weight [g mol-'1 

Figure 7 Scaling law of the Newtonian viscosity of 
polypropylene samples at 185'C: (0) and (-) polydisperse, 
(- - -) monodisperse. 
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is consistent with the drastic influence of a small 
amount of large molecules mentioned in the litera- 
ture.*' 

CON CLUSIO N 

Owing to a few assumptions, simplified molecular 
dynamics enables the calculation of a discrete re- 
laxation spectrum from known MWD of various 
samples of polypropylene. These samples with dif- 
ferent MWD (weight average molecular weight 
ranging from 110,000 to 225,000 g mol-' and poly- 
dispersity from 4 to 10) were obtained by melt per- 
oxidation in an internal mixer. Dynamic moduli, 
Newtonian viscosity, and crossover frequency were 
fairly well recovered in the experimental range, but 
some discrepancies were observed for the crossover 
modulus. These were attributed to the simplified way 
by which the effect of the surrounding is taken into 
account. Nevertheless, the predicted variations of 
the Newtonian viscosity and of the equilibrium 
elastic compliance toward the averages of the MWD 
were in agreement with experimental relations al- 
ready noted in the literature. Because of the com- 
plexity of the original spectrum, it has been shown 
that this spectrum can be reduced to a more simple 
one, with about 10 modes, without significant loss 
of information. This could be of great interest for 
calculation of complex flows using nonlinear con- 
stitutive equations and temporary network models. 
Indeed, time and memory saving can therefore be 
achieved because the memory function is described 
with a limited number of parameters while retaining 
some physical significance of the relaxation times. 
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